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Abstract—Multi-Modal Recommendation (MMRec) aims to
help users explore their potential interested items based on multi-
modal information input and has been widely used in e-commerce
platforms. Recent works mainly focus on modeling item-side
information. However, they ignore the abundant semantic in-
formation from the user-information modeling, including age,
gender, feedback, etc. Such imbalanced attention to item and user
leads to inadequate expressiveness of comprehensive interests. In
this paper, we propose a novel User-insight Multi-modal recom-
mendation framework, termed UiM. This framework improves
user modeling in three aspects: Firstly, to better explore the
primary interests from a large-scale item pool, we propose to
construct an enriched user profile to re-distribute attention to
users’ historical interactions. Secondly, to further disentangle
compact representations from heterogeneous items, we propose
to apply multi-interest feature extraction on re-attentioned item
features. Moreover, an intrinsic shortage of a trivial recommender
system is that it fails to access user feedback for in-place result
adjustment. As a solution, we access pseudo feedback beforehand
from an intelligent agent, then accordingly perform potential
adjustments to recommendation candidates for finer results.
Extensive experiments show that our model outperforms state-
of-the-art multi-modal recommendation models in three public
datasets.

Index Terms—Multi-modal Recommendation, User Profile
Modeling, Simulated User

I. INTRODUCTION

PERSONALIZED recommendation [1]–[4] aims to help
users explore their potential interested items and has been

applied to many fields such as news recommendation, book
recommendation, multi-modal recommendation, etc. A long-
standing challenge in this task is dealing with data sparsity,
specifically in modeling user interests from very limited his-
torical interactions.

Many deployed recommender systems [5]–[10] utilize
single-modality information to exploit item representation and
implicitly mine user interests. Some models [5], [6] only take
historical records as input and cannot proceed with other
side information such as knowledge graphs about item-item
relations, thus lacking generalization capabilities. On top of
this, many methods [11]–[16] have been proposed to utilize
side information to improve item representation learning. For
example, KGAT [11] utilizes a Knowledge Graph (KG) to
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Fig. 1. The pipelines of three kinds of recommender systems. (a) single-modal
recommender system, where usually only the ID embedding of historical
items is fed into the system for recommendations generation; (b) multi-modal
recommender system, which additionally takes multi-modal information of
items as input to enhance item representation; (c) our user-insight multi-modal
recommender systems, where the user profile is integrated with historical
records to collectively extract the user’s interests, and the system gives
recommendation results after obtaining feedback from a simulated user agent
with initial categorized results.

enrich the user-item bipartite graph with real-world knowl-
edge. HPM [17] incorporates category-level information with
ID attributes for better item representation learning. In some
other research [13]–[16], user reviews about items are in-
corporated to enhance item representation learning. However,
despite these improvements, single-modal methods fail to take
advantage of visual features, which contain abundant latent
information like fine-grained item style.

To incorporate visual features in recommender systems,
numerous approaches [3], [18]–[24] have been proposed and
widely applied since the rise of Multi-Modal Recommendation
(MMRec) task. DeepStyle [18] incorporates style information
of clothing to complement visual features in e-commerce
recommendation. VECF [19] uses pre-segmented images to
learn the human attention on different regions of an image.
LATTICE [22] learns item-item relations to explicitly inject
high-order item affinities into item representations. As a conse-
quence, these methods perform better than single-modal ones
when dealing with multi-modal inputs.

However, all of the above methods still put their pri-
mary attention on the item side, while ignoring rich latent
information from the user side. Since users play a central
role in personalized recommendation services, user modeling
[25] is equally important to item representation learning. We
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illustrate the problem in Fig. 1, where different pipelines of
recommender systems are shown. In subfigure (a), for the
single-modal recommender systems, only the ID embeddings
of historical items (1002, 1321, 3202) are used as input,
and the poor expressiveness of pure ID information leads to
unsatisfied performance, with only one out of three marked
as good. In subfigure (b), for current multi-modal methods,
multi-modal features like item pictures and textual descriptions
are integrated with ID embedding to enhance item represen-
tations. But in a real scenario, the user interests are multifold.
For example, in an e-commerce dataset, a user might be
interested in pet supplies and fashionable clothing simulta-
neously. However, the above two pipelines usually generate
an overall embedding for all interacted items, thus failing to
learn disentangled item representation. Moreover, due to the
inherent limitation of offline training and online testing, user
feedback was not accessible for previous works until the final
recommendations were produced. This means that feedback
can only indirectly improve the recommendation system and
is not frequently updated. Consequently, they can not deal
with frequent changes in user interests when inference. We
summarize these drawbacks of current single- and multi-modal
methods as:

• They partially focus on item-side information while ig-
noring the user-side information, including demographic
information and dynamic behavioral labels like accep-
tance for new items;

• They struggle to learn effective representation for hetero-
geneous interacted items, where user interests and item
features are entangled;

• The lack of online feedback makes current methods
vulnerable to newly emerged interests, which is usual in
multi-modal recommendations.

In this paper, we propose a user-insight multi-modal frame-
work, which is enabled with comprehensive user information
modeling for recommendation. Specifically, our solution con-
tains the following three modules:

Input with Enriched User Profile. Most existing works
tend to only utilize static information from user profiles,
such as gender, age, OS platform, etc. We argue that these
user profile features alone can not comprehensively reflect
the user interests. To manufacture comprehensive user interest
representation, we propose to enrich the user profile with more
unexploited hidden information. Specifically, we leverage data
mining to explore attributes of economic status and acceptance
of new items based on explicit demographic annotations.

Multi-modality-interest Extraction. To extract users’ com-
plex interests and enhance the expressiveness of the model in
encoding user interests, we have tailored the Capsule Network
(CapsNet) to the field of MMRec. Originally, CapsNet was
limited to extracting multiple interests within single-modality
scenarios [1], [2], [7]. However, by applying CapsNet on the
multi-modal item representation, we have enabled it to extract
multi-modality interests, effectively adapting it for the MMRec
task.

Simulated User with Real-time Feedback. Feedback is
crucial to a recommender system. As a solution, we are the
first to propose to introduce a virtual user simulated by a large

language model (LLM) into the loop of recommendation. The
virtual user functions as the spokesperson of the real user by
incorporating the enriched user profile and interaction histo-
ries. In practice, the virtual user takes the recommendation
candidate results as input and outputs its feedback. Finally, the
recommender system can timely revise the results accordingly
based on feedback.

Compared with directly using LLMs such as ChatGPT as
RecSys [26], [27], the initial recommendations can utilize
collaborative signals, which are of great importance in recom-
mendation scenes and an LLM is not capable of processing
such signals.

Our contributions can be summarized threefold:

• In this work, we pioneeringly explore the usage of more
comprehensive user modeling in the field of MMRec. The
incorporation of comprehensive user profiles in MMRec,
which includes not only just demographic information
but also hidden information and behavioral labels, does
have a positive influence, leading to an active impact on
candidate item retrieval tasks.

• From the aspect of specific techniques, we propose a
novel User-insight Multi-modal recommendation frame-
work (UiM), in which we enhance user modeling in
the multi-modal recommendation from three perspectives:
1) enriched user profile integration; 2) multi-modality-
interest learning; and 3) pre-trained simulated user.

• We conducted extensive experiments on three real-world
datasets, indicating that the proposed UiM achieves state-
of-the-art performance.

II. RELATED WORK

A. Multi-modal Recommendation

The multi-modal recommender systems [3], [4], [20]–[22],
[28] take a large amount of multimedia content of items into
consideration, which has been successfully applied to many
scenarios in the recommender fields. Most methods enhance
item representation learning with multi-modal features. For
example, He et al. [28] believe that people often pay close
attention to the visual information of products when shopping,
so they extend MF by extracting visual features from images to
improve recommendation performance. ACF [20] is based on
an attention mechanism in the item and uses component layers
to handle recommendation tasks in the multi-modal field. In
addition, most researchers focus on designing frameworks for
extracting better multi-modal features. Xu et al. [29] proposed
a multi-modal recommendation model that aims to capture
high-level conceptual information and explore the connection
between textual and visual features between users and items.
MMGCL [3] uses a self-supervised manner to disentangle the
users’ tastes on different modalities. Recently, Yuan et al. [12]
revisits the comparison between ID-based and multi-modal
recommender systems and reveals the advantages of multi-
modal recommender systems in generalization capabilities.
However, these multi-modal models partially focus on item-
side information and fail to pay attention to the user-side
information.
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Fig. 2. Overview of our proposed framework. Different from previous works that only use historical records, the framework takes into both pre-enhanced
user profiles and users’ historical records as input. The records are embedded, purified, and fused with the backbone model; and after the user profiles are
embedded, a multi-interest extraction module is utilized with dual two-layer MLPs and a CapsNet to project the user profile information into the historical
records and cluster the users’ interests. Finally, after initial recommendation results are generated, we use a simulated user agent to refine the recommendations
to get a more precise outcome. Details of the multi-interest extraction and the simulated user are shown at the bottom of the figure.

B. User Modeling
User modeling is another hot spot in the recommenda-

tion field. Unlike item representation learning which solely
learns item embedding, the user modeling learns user inter-
ests in a user-oriented manner. To achieve this that, vari-
ous approaches have been proposed to enhance user mod-
eling. MHCN [30] uses a multi-channel convolutional net-
work to encode hypergraphs in social recommendation. A
next-item recommendation framework [31] is proposed to
utilize sequential hypergraphs for dynamic user modeling.
LSTPM [32] combines long-term interests with short-term
interests to comprehensively model users’ interests and yields
significant improvements over the state-of-the-art methods. Wu
et al. [25] incorporates users’ social relations to enhance user
modeling. Although these methods attempt to enhance user
representation, these enhancements are not enough to mine
users’ interests precisely. Inspired by the UMI model [1], we
integrate historical records with enriched user profiles.

C. Language Model for Recommendation
From the very beginning, language models (LMs) have

benefited the recommendation area in many ways. At first
attempts, some works [33], [34] utilize traditional IDs to
represent users or items. Thereby, they disregard the semantic
understanding capabilities of LMs, thus having little boost
in performance. M6Rec [35] and UniSRec [36] incorporate
the natural language information as part of the users/items
modeling, achieving significant results. The models above are
limited to small models, while TallRec [26] and NIR [27]
apply LLMs in recommendation scenes. TallRec [26] finetunes
a pre-trained LLM with recommendation data to obtain a
specialized LLM for recommendation, and NIR [27] proposes
a zero-shot next-item recommendation prompting strategy to
direct LLMs to make next-item recommendations. However,
these works directly use LLM as a recommender system and
ignore the fact that the LLM is not capable of handling
collaborative signals, which are crucial to a recommender.

III. METHOD

Different from most recommender systems, we integrate
users’ historical records with user profiles, which come from
both the original dataset and the mining results. Users’ histor-
ical records contain a list of items the users have interacted
with and their features include ItemID, visual features, textual
features, timestamps, etc. An overview of our method is shown
in Fig. 2. First, a backbone model MCLN [4] is employed to
extract and fuse multi-modal features and model high-order
item-item relations and uninterested preferences. Then, we
use a user profile regulation module to re-weight the items,
followed by a multi-interest extraction module to cluster these
items into disentangled interest vectors. Finally, a simulated
user agent is utilized to achieve real-time feedback to refine
the recommendations.

A. Problem Formulation

Let U denote a set of users, and I denote a set of items
(known as item pool). For a given user u, Iu is his/her
interacted items (x1, x2, x3, ..., xt), where xi is the i-th item
interacted by the user and t is the historical behavior length.
Pu is his/her user profile. The ultimate goal is to recommend
items that align with the user’s interests. Modern recommender
systems usually adopt a two-stage approach, the retrieval stage
and the ranking stage. The retrieval stage is to retrieve top-N
candidate items from the item pool while the ranking stage is
designed to rank the items based on specific criteria.

The task for the retrieval stage in recommender systems
is to retrieve a subset of items that are related to the user
interests from I. Generally, the task in the retrieval stage with
multi-interest extraction can be formulated as follows:

Ru,t = max
1≤k≤K

(iku)
Tet (1)

where iku denotes k-th interest vector for the user u and
et denotes the representation vector for target item xt. The
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relevance score between the users’ interest vectors and the
target item is denoted as Ru,t.

Our paper mainly focuses on the retrieval stage by improv-
ing the modeling of user-side information.

B. User Profile Integration

Previous models fail to realize the importance of integrating
user profiles even if they have such data. In this part, we not
only integrate user profile information into our framework but
also enhance it with data mining.

User Profile Enhancement. In this part, we first enhance
the user profile because, in reality, the direct data source only
contains users’ static demographic features like gender, age,
occupation, location, etc, and we argue that such data is not
enough to precisely model user information.

We enhance users’ profiles with data mining. For economic
status, we combine geographical and occupational information
with external knowledge about the relations between the two
features to label the users’ income levels. For acceptance of
new items and behavioral features, we analyze users’ interac-
tion history and categorize them into pre-defined groups.

The above process can be formulated as follows:

eeu = f(egu + eou + kext) (2)

ebu = g(dh) (3)

where eeu, egu, eou, and ebu are user’s economic status, geo-
graphical information, occupations, and behavioral features
respectively. kext denotes external knowledge and dh denotes
users’ interaction history. f(·) and g(·) are labeling and
categorization functions.

User Profile Injection. Normally, historical items can rep-
resent user interests to some extent. However, the user profile
can inherently regulate the users’ interests and identify the
most influential part of users’ diverse interests, so that the
real interests can be extracted precisely. Given the embedding
vector ei of the ith historical item xi and the user profile eu,
the regulation of the user profile onto items can be formulated
as follows:

ai = σ(W2ϕ(W1[ei, eu] + b1) + b2), (4)

where σ(·) is sigmoid function, ϕ(·) is ReLu function, W1,
W2, b1 and b2 are all trainable parameters.

C. Multi-Modality-Interest Extraction

Capsule Network has been proven to be effective in interest
clustering in recommender systems [1], [2], [7], [10]. In
CapsNet, a capsule is a cluster where input vectors related
to the same category are aggregated together. Specifically, we
adapt CapsNet to multi-modality scenes to generate multiple
interests for the user. Given the the item representations
I = [e1, e2, ..., em], the jth capsule calculates the interest
vector hj as follows:

hj =

m∑
i=1

cijWjaiei, (5)

where Wj is the transformation matrix, and cij are the
coupling coefficients, indicating the clustering probability for
item ei under the jth interest capsule. It can be formulated as
follows:

cij =
exp rij∑K
k=1 exp rik

, (6)

where rij are the prior logits, defined as follows:

rij = (Wjei)Tsj , (7)

where sj is the ”squashed” interest vector:

sj = γ(hj) =
||hj ||2

||hj ||2 + 1

hj

||hj ||2
(8)

where hj is the total input of capsule j, and γ(·) is the
”squash” function.

From Eq. 5 to Eq. 8, we can see that the calculation of the
output sj relies on itself. As a result, a dynamic routing process
is designed to update its value iteratively. We first initialize rij
with Gaussian distribution.

Given the above process, we have K interest capsules after
iteratively updating values.

These interest capsules cluster users’ interests iteratively,
guiding us to explore the interest categories of the user.

To further intensify the regulation of user profiles, we use
a two-layer ReLU-MLP structure to calculate the reference
weights of different aspects of user profiles on the interest
vector, formulated as follows:

xk = σ(W4ϕ(W3[sk, eu] + b3) + b4), (9)

where σ(·) is sigmoid function, ϕ(·) is ReLu function, W3,
W4, b3 and b4 are all trainable parameters.

With the reference weights xk, we can formulate the
interest-related user profile as follows:

enu = δ(dn1en1u , dn2en2u , ..., dnNenNu ) (10)

where dni and eniu are the ith element of xk and enu respectively,
δ denotes the concatenation operation.

Finally, we formulate the kth user interest ok
u through a two-

layer MLP with ReLU as follows:

ok
u = h([eku, xk]) (11)

where h(·) is an MLP.
Here, we can see the interest vector is regulated with

relevant user profile features.

D. Simulated User Agent

When serving, we use a pre-trained simulated user agent
to mimic the user behaviors and give feedback to the recom-
mender to refine the recommendations. Specifically, through
practical attempts, we use ChatGPT as the agent by using
prompts to instruct it because we found that it performs well
in acting as a virtual role and ranking tasks, which perfectly
fits our requirements. Here are a few prompt templates.

Profile Module. In the profile module, we will give a
brief introduction about the target user with our user profile
information. Before the system starts, we will give a general
task description to the agent as follows: You will now act as
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an agent to simulate a user on a platform, I will give you
some brief information and then recommend a set of products
from the item pool. Your task is to simulate the user’s interests
and accept or reject the recommendation result based on the
interests.

To give a brief introduction about the target user with
our user profile information, we design the following prompt
template:

Template 1: You are going to simulate a ¡Gender¿ user
called ¡Name¿ (¡Age¿, lives in ¡Location¿, and works/studies
as ¡Occupation¿). You ¡Behavior Patterns¿, and love ¡Inter-
ests¿ movies.

Memory Module. In the memory module, we will give the
historical records to the LLM and make it memorize these
interactions with the following prompt:

Template 2: As ¡Name¿, you have watched (in se-
quence, followed by your rating) ¡Movie Name¿ (¡Rating¿),
¡Movie Name¿ (¡Rating¿), ¡Movie Name¿ (¡Rating¿), . . .

Feedback Module. In the feedback module, we will give
initial recommendation results generated from our recom-
mender system, and guide it to give pseudo comments as
real-time feedback to refine the recommendations with the
following prompt:

Template 3: Now the recommender wants to recommend
¡Candidate Name¿, ¡Candidate Name¿, ¡Candidate Name¿,
¡Candidate Name¿, . . . , and your task is to rank them. Please
reply at the end with ”my ranking as ¡Name¿ would be
¡Candidate name¿, ¡Candidate name¿, ¡Candidate name¿ ...”
when ranking.

Template 4: Now the recommender wants to recommend
¡Candidate Name¿, ¡Candidate Name¿, ¡Candidate Name¿,
¡Candidate Name¿, . . . , and your task is to decide whether or
not you will accept the recommendation results item by item.
Please be notified that the recommender might make mistakes,
so do not echo the recommender. Please reply at the end with
”I would accept these recommendations: ¡Candidate name¿,
¡Candidate name¿, ...”, here ¡Candidate name¿ is the item
you’d like to accept.

Specifically, we adopt a ”2x” strategy, which means if
we want to recommend top-N items, we will give initial
recommendation results with top-2N items and guide the
simulated user to rank them. Then the top-N of ranked items
will be the final recommendations and the rest are filtered out.
This is because we find that the LLM is good at list-wise
tasks and we will later study how prompt designs affect the
performance of the simulated user agent.

E. Model Training and Optimization

With the multiple user interests Ou and the target item
representation et, the probability that user u will interact with
the target item t can be calculated as follows:

ptu = OT
uet (12)

The model training is to maximize this probability score for
each positive target item in the training set against the rest

negative ones, and the loss function can be formulated as
follows:

Lall =
∑
u,t

−logptu + λ||Θ||2 (13)

where ||Θ||2 is the L2 norm of all model parameters, and λ
denotes the hyperparameter.

For negative data sampling, we adopt an in-batch neg-
sampling strategy instead of the commonly used random
sampling. Due to the existence of exposure bias, the ”unseen”
items are not necessarily items that the user does not actually
like. In this case, the random sampling strategy has a high
chance of selecting an item that is in fact a positive sample
as a negative sample, even though the user has not seen it.
For in-batch neg-sampling, in a mini-batch, we treat other
users’ positive samples as the target user’s negative samples
and significantly reduce the probability of mistakenly selecting
negative samples by narrowing down the selection range.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. Three public datasets are used for model evalua-
tion, including Movielens [37], Beauty [38] and Taobao [39].
Movielens [37] is a widely used and acknowledged dataset
with multiple versions that contains users’ ratings (integers
ranging from 1 to 5) on movies. Here we choose its 1M
version, which contains the user profile information like age,
gender, occupation, etc. For visual and textual features, we
crawl on the Internet to search for each movie’s poster and
introduction. Amazon-Beauty is a subset of the Amazon
Product Dataset [38]. The Amazon Product Dataset is a
large dataset collection containing product metadata (including
textual descriptions and images), users’ ratings, and reviews.
Taobao [39] provides product data with visual content only
and users’ purchase history.

Data Preparations. For data preparations, in line with
standard procedures, we divide these three datasets by 8:1:1
as train, test, and validation sets respectively. For dataset
splitting, due to the time sensitivity of our task, we first adopt
a temporal ordering strategy to split interacted items on a
sampled user. Then, we use a ratio-based splitting following
common practice, instead of the leave-one-out method.

To reduce noise and ensure the quality of the datasets,
we adopt a 5-core strategy that filters out users with less
than 5 interactions, and treat ratings equal to or over 3 as
positive samples and ratings less than 3 as negative samples.
Table I summarizes detailed statistics of the three datasets after
preprocessing.

It should be noted that all sensitive data has been desensi-
tized to avoid privacy concerns during training; when serving,
the data collector is separate from the recommendation model,
so that the process is user-identifier-free.

Evaluation Metrics. We use two commonly used metrics
for evaluation: HitRate@N and NDCG@N.

HitRate@N =
1

|U|
∑
u∈U

δ(|Iu,N ∩ Iu| > 0), (14)
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TABLE I
STATISTICS OF DATASETS AFTER PREPROCESSING.

Dataset #Users #Items #Interactions

Movielens 6,040 3,416 999,611
Beauty 15,576 8,678 139,318
Taobao 12,539 8,735 83,648

where δ(·) is the indicator function, Iu,N is the set of top-N
recommended items for user u, and Iu is the set of testing
items for user u.

NDCG@N =
DCG@N

IDCG@N
(15)

where DCG@N is the discounted cumulative gain that consid-
ers the positions of correct recommended items and IDCG@N
is the ideal discounted cumulative gain or the maximum
possible value of DCG@N .

Baselines. To demonstrate the effectiveness of UiM, we
compare the proposed UiM with the following state-of-the-
art recommendation methods.

BPRMF [5]: BPRMF is a classical model optimized with
BPR loss. It maps user and item representations as latent
vectors based on user-item interactions directly.

SVD++ [6]: This model incorporates the information of the
user’s historically interacted neighbors into the user embed-
ding.

ComiRec [2]: This is a novel multi-interest recommendation
model with a single modality. We use the ComiRec-DR
version based on a dynamic routing mechanism.

UMI [1]: This is a state-of-the-art user-aware multi-interest
learning model for candidate retrieval that fuses user profiles
and a capsule network to generate recommendation lists.

VBPR [28]: This model employs pre-trained convolution
neural networks to extract visual features of the items and
integrate them into the item embeddings.

MMGCN [21]: This model applies GCNs for embedding
propagation on interaction graphs with different modality data
to capture user interests in different modalities.

MMGCL [3]: This model introduces a negative sampling
technique that learns the correlation between modalities and
disentangles the users’ tastes in different modalities.

MCLN [4]: This is a multi-modal recommendation model
that identifies and eliminates the user preference-irrelevant
portion inside user-interacted multimodal content with coun-
terfactual inference of causal theory.

All these baselines can be divided into three categories: (1)
ID-based recommendation models (i.e., BPRMF, SVD++); (2)
Multi-interest-based models (i.e., ComiRec, UMI); (3) Multi-
modal models (i.e., VBPR, MMGCN, MCLN).

1) Hyperparameter Settings: For a fair comparison, all
methods are implemented with Pytorch 2.0 in Python 3.9.16
and learned with Adam optimizer [40].

We conduct our experiments on a single Linux server with 2
Intel(R) Xeon(R) CPU Gold 6132 @2.60GHz, 256GB RAM,
and 4 NVIDIA GeForce RTX 3090 (24GB each). The learning
rate and mini-batch size are set to 1 × 10−3 and 128 for the
Movielens dataset, and 1 × 10−3 and 256 for the rest two

datasets. The number of negative samples is 5 in the training
stage for all three datasets. We tuned the parameters of all
methods over the validation and set the embedding size as 512
and 1024 for the Movielens dataset and the rest two datasets
respectively.

B. Overall Performance

Table II summarizes the overall performance of all models.
Here, we make the following observations.

First, the multi-modal models (VBPR, MMGCN, MMGCL,
MCLN) are greatly superior to the ID-based models (BPRMF,
SVD++). This demonstrates the effectiveness of integrating
multi-modal information into embedding generation to assist
in modeling user interests. Among all multi-modal baseline
models, MCLN performs best on all datasets, which can
capture high-order collaborative signals with GCN and remove
the irrelevant parts of users’ interacted items, purifying the
representations.

Second, the multi-interest baseline models (UMI, ComiRec)
are significantly stronger than BPRMF and SVD++ on these
three datasets, which verifies the effectiveness of capturing
multiple disentangled interests to enhance the expressive-
ness of the user embedding. In all cases, UMI outperforms
ComiRec. A possible reason is that the UMI not only utilizes
multi-interest extraction with ID embeddings but also inte-
grates users’ static demographic attributes.

Third, the multi-modal models outperform ComiRec, sug-
gesting that visual features are of great importance in visually
enhanced fields like movie recommendation, but fall short of
UMI. We infer that the direct usage of user-side information
greatly improves the modeling of user interests and surpasses
the enhancement of item representation, which is used to
indirectly model user interests.

Our proposed UiM method outperforms state-of-the-art
baseline models in all settings, showing strong effectiveness in
recommendation accuracy. Compared with other multi-interest
and multi-modal models, our method utilizes some design
choices like user information enhancement and incorporation,
multi-modal multi-interest mining, and a simulated user agent,
leading to better performance. Specifically, our UiM method
outperforms the MCLN model in all experiment settings,
which demonstrates that integrating user-side information
shows potential in multi-modal recommendation scenes. Fur-
ther, our UiM model surpasses the UMI model which utilizes
static user profiles for single-modal recommendation in all
settings in both metrics, showing the value of user profile
enhancement and multi-modal multi-interest design.

C. Ablation Study

Study on the impacts of design choices. We conduct an
ablation study on the Beauty Dataset for each design choice
in our model to validate their effectiveness. Specifically, these
factors include enhanced user profile (Profile), multi-interest
extraction (Multi), and simulated feedback (S-F). Table III
reports the performance of these variants and the full model
on the Beauty dataset. Here, we can make the following
observations.
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TABLE II
THE OVERALL PERFORMANCE OF DIFFERENT METHODS ON THE THREE DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE. THE

RESULTS ARE PERCENTAGE NUMBERS WITH ”%” OMITTED.

Methods
Movielens Beauty Taobao

metrics@10 metrics@50 metrics@10 metrics@50 metrics@10 metrics@50
HitRate NDCG HitRate NDCG HitRate NDCG HitRate NDCG HitRate NDCG HitRate NDCG

BPRMF [5] 16.39 13.69 22.68 19.47 51.73 36.34 69.39 42.05 40.49 27.33 42.45 27.25
SVD++ [6] 16.77 14.02 23.12 20.61 55.20 38.95 69.73 42.95 42.93 28.19 43.72 28.31
ComiRec [2] 18.92 14.88 24.30 21.75 56.54 39.22 71.52 43.41 43.55 29.30 52.42 31.37
UMI [1] 19.36 16.07 25.91 21.94 58.36 41.02 73.49 45.17 47.02 30.24 60.35 33.28
VBPR [28] 18.98 16.55 25.82 23.48 56.70 39.73 72.36 45.52 43.64 29.28 59.82 33.02
MMGCN [21] 20.04 16.92 27.20 25.75 60.67 40.81 74.09 47.65 46.95 30.47 60.67 33.24
MMGCL [3] 21.33 17.45 29.45 27.59 64.78 44.89 75.21 49.38 48.33 32.56 63.29 34.45
MCLN [4] (baseline) 23.11 20.25 34.10 28.87 66.89 47.10 76.27 52.02 51.03 33.93 74.26 35.65
UiM (Ours) 25.32 22.08 35.27 30.32 71.66 50.15 79.30 54.12 53.83 36.11 75.35 38.22

TABLE III
THE ABLATION STUDY OF UIM ON THE BEAUTY DATASET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLDFACE. THE RESULTS ARE
PERCENTAGE NUMBERS WITH ”%” OMITTED.

Module Beauty

Profile Multi S-F HR@10 NDCG@10

# # # 66.89 47.10
 # # 67.02 47.93
#  # 68.39 48.04
# #  68.95 48.07
  # 69.72 48.82
 #  71.03 49.92
#   70.24 49.25
   71.66 50.15

Firstly, adding the multi-modality-interest extraction module
alone can witness a performance jump over the baseline model,
suggesting the effectiveness of generating disentangled interest
features. Secondly, performance experiences a significant rise
after the simulated user agent is implemented to achieve real-
time feedback, showing the strong ability to refine recommen-
dations with an LLM.

It should be noted that, in the comparison of single design
choices, adding the multi-modal multi-interest learning alone
is more accurate than adding the user profile information
alone. But when a simulated user has been added, the reverse is
true. A possible explanation is that the simulated user agent has
a broad grasp of external knowledge and can more effectively
capture user interests by combining such knowledge with user
profile information.

Study on the impact of prompt designs. To ensure
the generalization ability of our framework, we conduct an
ablation study on the Movielens dataset to study the impact
of different prompt designs and report the performance in
table IV. Specifically, we use two prompt designs (denoted
as Template a and Template b) in the Feedback Module:
a) Template a: Now the recommender wants to recommend
¡Candidate Name¿, ¡Candidate Name¿, ¡Candidate Name¿,
¡Candidate Name¿, . . . , and your task is to decide whether
or not you will accept the recommendation results.
b) Template b: Now the recommender wants to recommend
¡Candidate Name¿, ¡Candidate Name¿, ¡Candidate Name¿,
¡Candidate Name¿, . . . , and your task is to decide whether or
not you will accept the recommendation results item by item

TABLE IV
THE ABLATION STUDY OF PROMPT DESIGNS ON THE MOVIELENS

DATASET. ”S-U” MEANS SIMULATED USER. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLDFACE. THE RESULTS ARE PERCENTAGE NUMBERS

WITH ”%” OMITTED.

Prompt Design HR@10 NDCG@10 HR@20 NDCG@20

w/o S-U 24.19 20.98 29.77 27.89
S-U w/ Prompt a 25.32 22.08 30.79 28.93
S-U w/ Prompt b 24.72 21.49 30.32 28.02

Fig. 3. The performance of different K values on the Movielens dataset. The
left subfigure plots the HitRate@10 metric; and the right subfigure shows the
NDCG@10 metric.

and rank them. Please be notified that the recommender might
make mistakes, so do not echo the recommender. Please reply
at the end with ”I would accept these recommendations: ¡Can-
didate name¿, ¡Candidate name¿, ...”, here ¡Candidate name¿
is the item you’d like to accept and ”my ranking as ¡Name¿
would be ¡Candidate name¿ ¿ ¡Candidate name¿ ¿ ¡Candi-
date name¿ ...” when ranking.

As explained in section 3.4, the simulated user agent does
well in list-wise tasks as a result of Transformer-based archi-
tecture. From table IV, we can see that the simulated user with
Template a has a little performance gain compared with the
simulated user not used setting. The reason is that Template
a instructs the simulated user to give overall feedback on the
recommendation results, and the agent will tend to accept the
results if only part of the recommendation results are correct,
although the remaining parts are incorrect, resulting in its
correction function not being fully exerted. Also, Template b
has better performance compared with Template a and verifies
the above finding that the agent does well in list-wise tasks.

Study on the impact of K Value. The number of interests
K in UiM controls the diversity of user interests. Fig. 3
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Fig. 4. The performance of different lengths of interactions on the Movielens
dataset. The left subfigure plots the HitRate@10 metric; and the right subfigure
shows the NDCG@10 metric.

plots the performance changes of varying K values for the
Movielens dataset. We can observe that a single interest
representation (i.e., K = 1) achieves the worst performance
across the two metrics, which is the common practice in most
current methods. The optimal K value is 3 for the Movielens
dataset.

We made some assumptions about the decline when K
increases from 3 to 4. We analyzed the dataset and found
that most users do not have a significant number of interest
categories. So when the number of interest capsules continues
to grow after reaching its optimal value, the performance will
experience a decrease instead of the expected increase.

Study on the impact of Interaction Length. The length of
interaction history in UiM is highly related to recommenda-
tions. Fig. 4 plots the performance changes of varying length
values for the Movielens dataset. We can observe that a shorter
length of interactions achieves less performance across the two
metrics, which is consistent with common sense. However,
when a much longer length of interactions comes into the
recommender system, the performance peak is not shown as
expected across the two metrics. Noise might be the culprit that
pollutes the representation of user interests when interaction
history becomes longer.

Study on cold-start recommendations. We perform addi-
tional experiments in cold-start scenarios by manually truncat-
ing the user history data to a length of 5, 10, and 30 in the
Movielens dataset. The performances are reported in Table V.

From the table, the following observations can be made:
First, across all length settings, performances for met-

rics@1 are worse than metrics@5. This is reasonable because
when calculating HitRate, the denominator is the number
of interacted items. Given a specific length of history data,
when N arises, the chance of having more right items arises,
making the numerator greater while the denominator remains
unchanged.

Second, across all metrics, performances under the length
of 30, which corresponds to the warm-start scenario, are
better than those under 5 and 10. The cold-start challenge
has affected numerous recommender systems. Many deployed
systems [41]–[43] utilize techniques like meta-learning to
solve this issue.

Third, in cold-start settings, the performance under the
length of 10 is slightly better than that of 5, which verified
the fact that a shorter interaction history leads to worse
recommendation accuracy in cold-start scenes.

Specifically, our system, with the incorporation of user-

TABLE V
THE PERFORMANCE IN COLD-START SCENARIOS IN THE MOVIELENS

DATASET. THE RESULTS ARE PERCENTAGE NUMBERS WITH ”%”
OMITTED.

Truncated length HR@1 NDCG@1 HR@5 NDCG@5

5 13.24 12.88 15.09 14.83
10 14.96 13.67 16.41 16.10

30 (warm) 16.53 15.49 19.35 19.07

Fig. 5. Steve’s and Jessica’s user profiles and the impacts on their interests.
On the left are interest categories; on the right are the reference weights the
interest categories have on the profile features. (Best viewed in color)

side information, multi-modal multi-interest extraction, and
the simulated user agent, reduces the reliance on historical ID
embedding. So it can be seen that the performance degradation
of our model is not that much in cold-start settings compared
with the warm-start setting. The zero-shot ability of the
simulated user agent component also ensures the performance
of our model in cold-start scenarios.

D. Case Study

In this part, we randomly select a male user (namely Steve)
and a female user (namely Jessica) from the Movielens dataset
and perform several case studies to intuitively display our
model performance. Steve’s historical records can be roughly
categorized into six groups: thriller, adventure, document,
animation, sci-fi, and action; while Jessica’s historical records
can be divided into five groups: romance, children’s, drama,
musical, and mystery. Due to limited space, we only demon-
strate three main interests for them.

Study on the impact of user profile. In this experiment, we
use Steve’s and Jessica’s data and display the reference weights
provided by equation 9 for the user profile features. In addition
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Fig. 6. Visualization of multi-interest extraction on Steve and Jessica. On
the left are the historical items in time order; on the right are examples of
recommendations generated by our framework with multi-interest extraction.

Fig. 7. Visualization of the workflow of the simulated user agent. The
recommender system takes the user’s profile and historical items with ratings,
generates initial recommendation results, and passes the initial results to the
simulated user. Then, the virtual user that simulates the real user gives real-
time feedback to refine the recommendations.

to the reference weights, we display the clicked movies rele-
vant to each interest. Fig. 5 shows Steve’s and Jessica’s user
profiles and their impacts on the user’s interests, respectively.
From the figure, we can see that Steve is interested in thriller
movies and that Jessica shows a particular interest in romance
movies, which differs from Steve’s interests. A possible reason
is that male users tend to like movies with horrifying elements
while female users are more likely to watch movies with
romance, drama, amusement, etc, and the darker colors of
gender and age on the thriller/romance interests in Fig. 5 give
us an intuitive glimpse into how user profile features affect
users’ interests.

Study on the impact of multi-interest extraction. Later,
we perform multi-interest extraction experiments on Steve and
Jessica, and the results are shown in Fig. 6. From Fig. 6,
we can see that Steve’s and Jessica’s interests are divided
into different categories, which later can be used to generate
candidate items, as shown in the right part of Fig. 6.

Study on the impact of the simulated user agent. Also,
we perform experiments with the simulated user agent on
Steve and visualize the workflow in Fig. 7. In this experiment,
we use the rest part of Steve’s interaction history as a toy

example and show how the simulated user agent works as
a real-time feedback source. In the example, we provide the
agent with Steve’s user profile information using Template 1
in the Profile Module. Later, we utilize Template 2 in the
Memory Module to let the agent memorize the interaction
history. Finally, Template 3 in the Feedback Module is utilized
to get pseudo comments as real-time feedback to refine the
recommendations.

Simulated User: As Steve, based on my movie preferences
and interests, I would assess each recommendation separately:

a. COCO: I would likely accept this recommendation, as
I have previously enjoyed animated films like Zootopia and
Frozen.

b. Avengers: I would definitely accept this recommendation,
as I love action movies and have given a high rating to Fast
& Furious 9.

c. La La Land: Considering my preferences for animation,
sci-fi, and action movies, La La Land, being a musical and
romantic drama, may not align closely with my usual choices.
Therefore, I might be hesitant to accept this recommendation.

d. Interstellar: Given my interest in sci-fi, I would also
accept this recommendation, as it aligns with my preferences.

In summary, as Steve, I would accept these recommen-
dations: COCO, the Avengers, and Interstellar. They cover
a range of genres that I enjoy, including animation, action,
and sci-fi, and my ranking as Steve would be Avengers ¿
Interstellar ¿ COCO.

V. DISCUSSION

In this paper, we examine the integration of user-side
information and propose a novel user-insight multi-modal
framework for recommendation. Specifically, the framework is
capable of dealing with user profile information by enhance-
ment and fusion with historical records. Also, a simulated
user is utilized to refine the recommendations. However, our
method still has certain limitations: 1. The effectiveness of
the simulated user agent depends on the LLM, which may
not always be accessible; 2. Our method integrates user-side
information with item representations that already fuse multi-
modal features. However, users’ tastes in different modalities
are not the same. In the future, we will explore user profile
integration on different modalities and try to expand our work
into more fields like music recommendation.

VI. CONCLUSION

In this paper, we propose a novel user-insight multi-modal
recommendation framework, enabling more precise candidate
retrieval in multi-modal recommenders. We enhance user
profiles and integrate them into the framework, achieving more
accurate interest extraction. We also tailor Capsule Network to
better exploit users’ diverse interests in the field of MMRec.
Specifically, we introduce a simulated user agent to achieve
real-time feedback. Experiments through three public real-
world datasets confirm the superiority of our proposed method.
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LIST OF FIGURES

Fig. 1: The pipelines of three kinds of recommender systems.
(a) single-modal recommender system, where usually only the
ID embedding of historical items is fed into the system for
recommendations generation; (b) multi-modal recommender
system, which additionally takes multi-modal information of
items as input to enhance item representation; (c) our user-
insight multi-modal recommender systems, where the user
profile is integrated with historical records to collectively ex-
tract the user’s interests, and the system gives recommendation
results after obtaining feedback from a simulated user agent
with initial categorized results.
Fig. 2: Overview of our proposed framework. Different from
previous works that only use historical records, the framework
takes into both pre-enhanced user profiles and users’ historical
records as input. The records are embedded, purified, and
fused with the backbone model; and after the user profiles
are embedded, a multi-interest extraction module is utilized
with dual two-layer MLPs and a CapsNet to project the user
profile information into the historical records and cluster the
users’ interests. Finally, after initial recommendation results
are generated, we use a simulated user agent to refine the
recommendations to get a more precise outcome. Details of
the multi-interest extraction and the simulated user are shown
at the bottom of the figure.
Fig. 3: The performance of different K values on the Movielens
dataset. The left subfigure plots the HitRate@10 metric; and
the right subfigure shows the NDCG@10 metric.
Fig. 4: The performance of different lengths of interactions on
the Movielens dataset. The left subfigure plots the HitRate@10
metric; and the right subfigure shows the NDCG@10 metric.
Fig. 5: Steve’s and Jessica’s user profiles and the impacts on
their interests. On the left are interest categories; on the right
are the reference weights the interest categories have on the
profile features. (Best viewed in color)
Fig. 6: Visualization of multi-interest extraction on Steve and
Jessica. On the left are the historical items in time order; on
the right are examples of recommendations generated by our
framework with multi-interest extraction.
Fig. 7: Visualization of the workflow of the simulated user
agent. The recommender system takes the user’s profile and
historical items with ratings, generates initial recommendation
results, and passes the initial results to the simulated user.
Then, the virtual user that simulates the real user gives real-
time feedback to refine the recommendations.


